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Abstract We develop the operator formalism to show how systematically the fractional Fourier 
transformation of a wavefunction. recently introduced by Namias, can be  derived from the 
rotation of the corresponding Wigner disuibution function in phase space. In this formalism, the 
phase factor obtained by McBride and Ken is seen to come from the caustics of the harmonic 
oscillator Green function. Then the idea is generalized to the case of an arbitrary area-preserving 
linear transformation in phase space, and a concept of the special affine Fourier transformation 
(SAFr) is introduced. An explicit form of the integral representation of the S A R  is given, and 
some simple examples are presented. 

1. Introduction 

The Fourier transformation provides a powerful tool with which various wave phenomena 
can be analysed. One of its important properties is that it transforms a function U to itself 
if applied four times: 

[ F F F F ~ I ( ~ )  = [ ~ 4 ~ 1 ( ~ )  = (1) 

Recently Namias [I] has introduced a new concept of the fractional Fourier 
transformation (abbreviated here as FRT and symbolized by Fe). In this theory, equation (1) 
is generalized to a fractional index ct 

[(.%)“ul(x) = 4 x 1  ( 2 )  

with the semigroup property 

Fo, F& = ~Je, t o 2  (3) 

where 0s are a rb i t rq  real numbers. An explicit integral representation of this transformation 
has been given [I], and its rigorous mathematical formulation has been also performed [Z]. 

Quite recently, it has been pointed out 131 that there is a close relationship between 
the FRT of a function U and the rotation of the corresponding Wigner distribution function 
(WDF) in phase space by the angle fractional of n/Z. 
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In this paper, we investigate the FRT based on the operator formalism and discuss a 
further generalization of Namias' idea The main advantages of the present approach are (a) 
it enables us to see the above-mentioned relationship between the FRT and the rotation of the 
WDF in a transparent geometric manner, (b) the phase factor, which has been introduced by 
McBride and K m  121 in order to make Namias' original definition of t h e m  rigorous, can be 
interpreted naturally as the effect of the caustics on the harmonic oscillator Green function, 
(c) then it is quite straightforward to include a more general transformation (the special 
affme transformation) in phase space, in which the WDF is defined. The corresponding 
transform of a given function will be referred to in this paper as the special afine Fourier 
transformation (SAFT). We derive the explicit form of its integral representation. We use 
the quantum mechanical notation [4] for convenience. However, our discussion itself is, of 
course, not restricted to quantum theory but applicable to any wave phenomena. 

The paper is organized as follows. In section 2, first the basics of the quantum 
mechanical notation relevant to our discussion are summarized. Then a brief review is 
given for the construction of the WDF. In section 3, the relation between the FRT and the 
rotation of the W F  in phase space is shown in the abstract operator formalism. Section 4, 
which is the main part of the paper, contains the generalization of the "r to the SAFT and 
the construction of the explicit form of the corresponding integral representation. Some 
simple examples are also given there. Section 5 is devoted to concluding remarks. 

2. The Wiper  distribution function 

In the quantum mechanical notation [4], the Fourier transformation of a function u(x)  = 
(xlu) is nothing but a change of representaiton of a given abstract state vector lu): 

[Fu](k)  = U F (k) = (klu) = - * 1.r (klx)(xlu). (4) 

Here In) and Ik) are base elements of the position and wavenumber representations, 
respectively. They are the eigenstates associated with the eigenvalues x and k of the 
Hermitian position and wavenumber operators, i and b, satisfying the cummutation relation 

(5) 

(In quantum theory, f is the momentum operator divided by f i . )  Some basic formulae are 
presented as follows: 

[ i . f ]  = i L  - h = i. 

(x lx ' )  = 6(x  - x ' )  

(klk') = S(k - k') 

(6) 

(7) 
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The WDF [5,6] associated with the state [ U )  is defined by 

1 
W ( x ,  k )  = - 1 dy exp(-iky)u* ( x  - i) U (. + 2) 2n 2 

Let us see that this function has also the following operator form: 

W ( x ,  k )  = Tr[$A(x, k)] (12) 

where ,6 is the density operator 

6 = lu)(ul (13) 

and A is the Wigner operator 

(Equation (13) can be extended to the case of incoherent waves where j is not factorizable.) 
We express the trace operation in (12) in the position representation and insert partition of 
unity (9) between ,6 and A to obtain 

W ( x ,  k)  = 1 1 dx‘dx” u*(x’)u(x”)w(x‘, XI’  : x ,  k )  

w(x‘,  x“ : X ,  k )  = - //dsdtexp[-i(sx +tk)l(x’lexp[i(si + ti)llx”). 

(15) 

(16) (W2 ~ ~ 

From the formula 

it follows that 

(18) 

where the formula (x’l exp(iti) = ~(x ’  + t I has been used. Therefore we have 

(19) 
1 

2n 
w(x‘ ,  x” : x ,  k )  = - exp[ik(x’ - x“)]S 

Now with a simple calculation, one can see that (15) combined with (19) leads to definition 
(11). 

It is known that the Wigner operator defines the following operator-correspondence 
relations: 

These formulae can be used to relate the geometric transformations in phase space to the 
unitary transformations in the Hilbert space, and vice versa. 
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3. An operator approach to the fractional Fourier transformation 

Let us consider the transformation of the WDF under the rotation of an angle 8 in phase 
space (x, k), that is, 

S Abe and J T Sheridan 

W(x, k) -+ WR(x, k) = W(xcos9 - ksin9, kcos9 fxs in9 )  (22) 

which, for an infinitesimal rotation angle 69, becomes 

W(x,k)+ WIR(x,k)= [ 1+S9 ( x--k- a”k l x ) ]  w(x’k)’ (23) 

From (E), (ZO), and (ZI), the right-hand side of this equation is rewritten as 

where the cyclicity property of the trace operation has been used in the last equality. The 
finite rotation (22) is an accumulation of infinitesimal rotations, and is expressed as follows: 

(25) W(X, k) + WR(x, k) = Tr[fi(O),68+(9)h(x, k)] 

Therefore the rotation of the WDF corresponds to a unitaty transformation of ]U) 

[E) -+ 1uR) = exp(i&(@)lu). (27) 

Here the overall constant phase factor has been introduced, since equation (25) does not 
know anything about it. (This phase ambiguity will be eliminated by semigroup property 
(3). See below.) Using (9). we have the following x-representation for the rotated wave: 

U R (x) = (xluR) = e ’ X  s dx’G(x,x’;g)u(x‘) (28) 

where 

G(x, x’; 9)  = (xlfi(9)lx’) 

with the ‘initial’ condition G(x, x‘; 0) = S(x - x‘). Apart from the multi-valuedness of 8, 
identifying 9 with time, we see that the kernel G(x, x’; 8) is formally equal to the Green 
function of the harmonic oscillator Schrodinger equation with unitmass and frequency [7]: 
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In the above, the symbol I ( A )  stands for the largest integer smaller than A. This factor is 
known to come from the caustics, and plays a central role in the proof of the (semi)group 
Property 

+ez) = ~ x ~ G ( x ~ , x ~ ; ~ ~ ) G ( x ~ , x ~ ; ~ ~ ) .  (31) 

ri(sl)ri(ez) = ri(el +tu. (32) 

s 
Clearly this has its origin from the Abelian-group property of the unitary operator fi 

These mean that the (semi)gronp property of the transformation (27) (or (28)) is established 
without any extra phase factor. Therefore, exp(iX) = 1 for the FRT. 

Thus we have 

This is essentially equivalent to the definition of  the FRT of U with 01 = zir/e.t 
In this construction, the constant phase factor in the FRT, which has been introduced by 

McBride and Kerr [Z] to make Namias' original formulation rigorous, is seen to come from 
the caustics of the harmonic oscillator Green function. 

In the special case of 6 = n/2,  equation (33) is reduced to the classical Fourier 
transformation. 

4. The special affke Fourier transformation 

The present operator approach to the FRT enables us to construct a more general class of 
transformations. In this section, we consider a special affine transformation in phase space 
and introduce a concept of the special affine Fourier transformation (SAFT). 

A special affine transformation in phase space ( x ,  k )  is given by 

with the 'lossless' (area-preserving, or power-preserving) condition 

ad - bc = 1. (35) 
The set of such transformations forms the inhomogeneous special linear group ISL(2, R). 
Under this transformation, the Wigner operator changes as follows: 

8(x ,  k)  + - 1 I d s d t  exp(is[2 - (ax +bk +m)] +it$ - (ex + d k  +n)]}  
( W 2  

= & // ds dt exp(is[d(2 -m)  - b ( i  -n) - X I  +if [a ( i -  n )  -c(2 -m) -k] } 

= i+(m,n)- 11 ds dt exp[is(df - bi  - x) + i t (a i  - c f  - k)]&m, n) 

(36) 
(k)2 

t The operator in the exponential of (26) is the Hamiltonian operator of a harmonic oscillator with unit mass 
and frequency. This clarifies why the function exp(-x'/2)Hn(x) (Hn: the Hermite polynomial of ordern) is an 
eigenfunction of the FRT [I, 21. 
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where b(m,  n) is the unitary displacement operator 

d(m, n) = exp[i(mi - n i ) ]  (37) 

provided that, in the last equality in (36), the following formula has been used: 

The case ay - p 2  = 0 can be seen as the limit Q + 0 in (41) and (42). Henceforth, the 
cases ay - p 2  p 0 are considered. 

Now, with the identifications of coefficients 

a =cos Q - @/a) sin Q 

c = ( y / Q )  sin@ 

a = cosh Q - ( p / Q )  sinh Q I c = (y/Q)sinhQ 

equation (36) is further rewritten as 

b = -( a/@) sin Q 

d = cos Q + ( p / Q )  sin Q 

b = -(a/@) sinh Q 

d = cosh Q, + (@/Q) sinh Q 

(av - BZ ' 0) (44) 

(ay  - BZ < 0) (45) 

I 

L ( x ,  k) -+ b+(m, n)?+(cu, 8, y ) A ( x ,  k )P(a ,  8, y ) b ( i , n ) .  (46) 

Therefore, repeating the discussions in section 3 about the transformations of the WDF and 
its corresponding wavefunction, we obtain 

dx' exp(-inx')(xl?(a, p ,  y)Ix' - m)u(x') (47) USAFT 

where the formula &m, n)lx') = exp(-inx' + imn/2)lx' - m) has been used, and the 
arbitrary phase factor, exp(ix), has been introduced again. 
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To calculate the kernel in (47), it is convenient to diagonalize the quadratic form (40) 
with respect to i and i. As can be seen, it’is diagonalized by a rotation operator of the 
form (26). 

In the case when @ > 0, 

In terms of A+, 0 in (43) is expressed as 

*=m. 
On the other hand, when p < 0, we obtain 6(6)k?+(@) = (1/2)(h+$ +h-iZ)  with 

the same h+ and q5. Because of the property f i ( - q 5 )  = f i + ( q 5 ) ,  the p < 0 case is obtained 
by replacing q5 by -q5 in the case ,6 > 0. So, it is sufficient to discuss only the case p 0. 

Using (48). the kernel in integral (47) can be written as follows: 

(xlp(u, P ,  ~ ) l x ’  - m) = 

~ ( x l ,  xz) = ( X I  I exp --(h+k2 + AY) 

dxi h z  G(x, xi; q5)G*(x’ - m, xz; q5)K(xi7 xz). (52) JJ 
I-) (53) [1. * 1 

where G is given in (29) with (26). 
The function K is classified into two types. If both A+ and h- are positive (negative), 

then K(K*) is essentially the Green function of a normal harmonic oscillator. If A+ > 0 > 
A- (A- > 0 > A+), then K(K*) is the Green function of an upside-down oscillator [8]. 
That is, for the positive A+ 

[(x:+x;)COS0 -2x1xz1 

with 

R m= 0/lh+l = lh-l/0 

while, for A+ > 0 > L 

(54) 

(55) 

with R given in (55). 
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Substituting the above expressions for K into (52) and using the integral formulae 

we have, for A.+ > A- > 0 (,9 > 0) 

while, for A+ z 0 > A- (,9 > 0). 

i c 2sinhQ,(R-’ cos2@ - Rsin2+) 
{[x*+(x‘-m)’] cosh O - k ( x ‘ - m )  . xexp 

(59) 

with 6 = 0  (or > 0, i.e. b <O), 3n/4 (or < 0, i.e. b > 0, and Rcotha-cot@ > 0), -a/2 
(or < 0, i.e. b 

Here we recall that there is the ambiguity concerning the overall constant phase in (47). 
In the case of the FRT in section 3, the phase factor was determined in conformity with 
(semi)group property (31) or (32). However, in the present discussion of the s m ,  such a 
property does not exist because of the non-Abelian nature of ISL(2, R). Therefore, in what 
follows, the constant phase factors in (58) and (59) are absorbed into the factor exp(ix) in 
(47), which is further set equal to uniry for simplicity. 

Now let us express the kernel (x lVlx‘ -m)  in terms of the parameters of transformation 
(34). From (44), (45), (50). and (55), we find that, up to the irrelevant constant phase factor, 
both (58) and (59) have the following form: 

I +[ (x ‘ -m) ’  - x 2 1 ( R +  R-’)sinhQ,sin+cos@} 

0, and R coth Q, - cot+ i. 0). 

(XIPIX‘ - m) = - exp --[ax2 + d(x‘ - m)’ - 2x(x’ - m)] m [ j b  

which turns out to hold for any values of ISL(2, R) parameters. 
Thus we obtain the main result: 

USAFl 

x / dx’ exp {-$[dx” - Z(x fdm - bn)x’] u(x’). I 
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In the special case of b = -c = -sine, a = d = cos@, and m = n = 0, equation (61) 
reduces to the main part of the FRT (33) without the constant phase factor. 

[I] u(x)  = exp(ipx) 
Finally we present two simple examples of the s m :  

( x )  = -exp -- [(ad - 1)x2 - 2b(p - n)x]  
I I 2bd 

USAFT 

m 

uSAm(x) = (b2uZ +d2)-''4exp [ -- ;';:;,""B2"] 
] (63) xexp - [(l -ad  + iabu)x2 - 2b(n - imu)x] 

1 [ 2b(bu+id) 

provided that all constant phase factors have been neglected. 

5. Concluding remarks 

We have developed the operator formalism to show that the fractional Fourier transformation 
introduced by Namias is obtained from the rotation of the Wigner distribution function in 
phase space. We have seen that the phase factor in the PRT obtained by McBride and Kerr 
can be interpreted as the effect of the caustics for the harmonic oscillator Green function. 
We have generalized further the FRT to the special &ne Fourier transformation, in which a 
transformed wavefunction corresponds to the ISL(2, R) transformation of the WDF in phase 
space, and have given an explicit form of~iis integral representation. 

Recently it has been shown [3,9] that an optical device with graded-index media can 
perform the FRT of light waves. The s m  presented here is the most general lossless 
(inhomogeneous) linear transformation in phase space. We expect that the SAFT can provide 
fresh geometric insight in the areas of signal processing and beam shaping. 
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